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Abstract. The complete symmetry group of a particle moving in one dimension under the 
influence of a negative quadratic potential (‘the repulsive oscillator’) is shown to be Sl(3, R). 
The generators of the five-parameter subgroup are obtained from the two linear and three 
quadratic invariants of the Hamiltonian. The additional generators required for the 
three-parameter subgroup are obtained from the method of extended Lie groups. It is 
inferred that an n-dimensional, uncoupled, undamped and unforced linear system has the 
complete symmetry group S l ( n  +2,  R) .  

1. Introduction 

Discussion of the symmetry groups of dynamical systems, especially classical, has 
widened in recent years. Initially, discussions were of purely geometrical symmetries, 
for example rotational invariance. The concept of dynamical symmetry as contrasted to 
geometrical symmetry arose from the necessity to explain the existence of degeneracies 
in spectra which were over and above those expected on purely geometric grounds. 

For the non-relativistic Kepler problem the conserved Runge-Lenz vector provided 
additional generators which showed that SO(4) was the appropriate symmetry group. In 
the case of the non-relativistic isotropic harmonic oscillator, the conserved Jauch-Hill- 
Fradkin tensor performed a similar task. In this case the symmetry group was SU(3). 
Each constant of the motion associated with these symmetry groups has zero Poisson 
bracket with the (appropriate) Hamiltonian. Subsequent development has been in the 
construction of non-invariance symmetry groups. These have taken the form of 
non-invariance super-groups as studied by Mukunda et a1 (1965) and of non-invariance 
groups for time-dependent systems such as those studied by Gunther and Leach (1977) 
and Leach (1978a). 

More recently, attention has been given to the complete symmetry groups of 
dynamical systems. The basic systems studied have been one-dimensional and linear. 
Linear systems are important physically and have the advantage of being amenable to 
mathematical treatment. It would appear that the concentration on one-dimensional 
systems has been from a desire to highlight the symmetry rather than to engage in a 
demonstration of algebraic dexterity. However, there is a more serious difficulty in the 
treatment of multi-dimensional linear systems which is related to the diagonalisation of 
symmetric matrices by symplectic transformations (cf Williamson 1937). 

Anderson and Davison (1974) showed that the one-dimensional, time-indepen- 
dent, harmonic oscillator and the free particle both possessed the complete symmetry 
group Sl(3,R).  The result for the oscillator was obtained also by Wulfman and 
Wybourne (1976) who employed the method of extended Lie groups. In an elegant 
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paper, Lutzky (1978) combined Noether’s Theorem with a modification of the exten- 
ded theory to obtain the same result. Leach (1979) showed that the one-dimensional, 
time-dependent, harmonic oscillator also has Sl(3, R )  as its complete symmetry group. 
The method adopted was based on a combination of linear canonical transformations of 
the Hamiltonian and the method of extended Lie groups. The complete symmetry 
group for an n-dimensional time-dependent harmonic oscillator (uncoupled) was 
shown to be Sl(n + 2, R )  by Prince and Eliezer (1980). They followed Lutzky’s method. 
By implication the corresponding time-independent problem also possesses Sl(n + 
2, R )  symmetry. 

In this paper, the complete symmetry of a particle moving in one dimension under 
the influence of a negative, time-independent, quadratic potential is shown to be 
Sl(3, R ) .  With this result established, it may be inferred that the complete symmetry 
group of an n-dimensional linear system, without damping, coupling or forcing terms, is 
Sl(n C2, R ) .  This is the case whether the potential terms are time-independent or 
time-dependent. (The generators for the one-dimensional, time-dependent negative 
quadratic potential are listed in the Appendix.) It remains to be seen whether the result 
extends to the three categories of systems which have been excluded. 

The main decision to be made when embarking on the determination of a complete 
symmetry group is which method is to be adopted. In this paper the method used is that 
which combines the Hamiltonian invariants and the extended Lie theory. The other 
two methods are believed to be equally suitable in this instance. However, the present 
writer is not convinced that this will be the case in all instances, especially when applying 
the method of extended Lie groups. The main motivation for the choice in this problem 
is that it lies within the author‘s programme of demonstrating the essential sameness of 
all classical quadratic Hamiltonians. 

The development of the paper reflects that purpose. The canonical transformation 
from attractive to repulsive oscillator is derived and from this the two linear and three 
quadratic invariants obtained. Using standard theory the associated generators may 
then be written down. The form of the remaining three generators is suggested. They 
are shown to satisfy the partial differential equations arising from the method of 
extended Lie groups. The eight generators are shown to have the commutation 
relations appropriate to the symmetry group Sl(3, R ) ,  which establishes the result. A 
comparison of these generators with those of the time-independent and time-depen- 
dent harmonic oscillator suggests the generators for the time-dependent repulsive 
oscillator and they are listed in the Appendix. On a matter of terminology, the system 
described here is called the ‘repulsive oscillator’. On a point of semantics this is, in a 
sense, nonsensical, but it is believed to be a suitable description. 

2. Canonical transformation from attractive to repulsive oscillator 

The repulsive oscillator has Newtonian equation of motion 
q - q = o  

H = $( p 2  - q*) 
and associated Hamiltonian 

in which 
p = q .  
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In terms of the two-vector zT = (4,  p ) ,  the Hamiltonian is 
H E '  T 2 2  AZ 

where the 2 X 2 real symmetric matrix A is given by 

--1 0 
A = (  0 1)- 

The attractive oscillator has Hamiltonian 
R-L-T 2.2 I f  (2.6) 

where I is the 2 x 2 identity. A linear canonical transformation form 
accomplished by 

to H is 

z =si? (2.7) 

S = JAS - SJI, 

where the 2 X 2 real matrix S satisfies the system of equations (Leach 1977) 

(2.81 
J being the 2 x 2  symplectic matrix. The requirement that the transformation be 
canonical imposes the constraint that 

SJST = J. (2.9) 
The system of equations (2.8) may be rewritten as 

U = M u  
where 

U T  = (S11, s12, s 2 1 ,  S22)  

M = ( I "  ;). 
Setting to = 0, the solution of (2.10) is 

u ( t )  = exp(tM)u(O) 

I O  J O  
O J  = [ ( I )  cosh t cos t + (  ) cosh t sin t 

+ ( I  O I  O)s inhrcos r+(  0 3  ) s i n h t s i n r  
J O  

Writing 

(2.10) 

(2.1 1) 

(2.12) 

(2.13) 

(2.14) 

the constraint (2.9) becomes 

(2.15) 

As it is desired to express the invariants of I? in terms of z ,  the inverse transformation is 
required. Since 

T 
U 1 J u ~  = 1. 

S-' = - JS'J 

= - J [ u i ( f ) ,  u2(t)IJt (2.16) 
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when u l ( t )  and uZ( t )  are substituted from (2.13), the inverse is 

S-' = ( I  sin t - J  cos t ) ( -ul  sinh t - u z  cosh t, u1 cosh t + u2 sinh t ) .  (2.17) 

3. The invariants 

The Hamiltonian (2.6) has five invariants (see Leach (1979) The Complete Symmetry 
Group of a One-dimensional Forced Harmonic Oscillator (unpublished)), two linear and 
three quadratic in the canonical variables. (There are, of course, invariants of higher 
degree, but their Poisson bracket relations, which generate more invariants, do not 
constitute a closed set and so are not suitable to proiiide the finite number of generators 
which is a feature of second-order equations.) The linear invariants are given by the 
elements of the vector 

C1 = ( I  cos t - J sin t ) f .  

c2 = c1cT 

(3.1) 

The quadratic invariants are given by the elements of the matrix 

= ( I  cos t - J sin t )zTT(I  cos t + J sin t ) .  (3.2) 

There are three linearly independent elements of C2. The usual forms of the invariants 
are given by 

[C2112 = [C2121, m 2 1 1 1 +  [C2122), w 2 1 1 1 -  [C2122).  

However, the expression in (3.2) is suitable for the present formalism. At the 
appropriate stage in the development, the invariants will be regrouped. 

Applying the transformation 

f = s-12 (3.3) 

CI = - J (u l  cosh t + uz sinh t, u1 sinh t + u2 cosh t)Jz. (3.4) 

This may be written in a form free of the vectors u1 and u2 by premultiplying by S(0) .  
Then 

with S-' as given in (2.7), the linear invariants become 

c; =S(O)Ct 
T 

= ( U 2  ?)Cl 

= ( I  cosh t - K sinh t ) z  

where the matrix K is 

K = ( :  i). 
Under the transformation the matrix of quadratic invariants becomes 

Cz = J ( u l  cosh t + u2 sinh t, u1 sinh t + u2 cosh t )JzzTJT 

x ( u l  cosh t + u2 sinh t, u1 sinh t + u2 cosh t)TJT. (3.7) 
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This may be converted to an invariant matrix free of u1 and u2 by premultiplying by S(0) 
and postmultiplying by S(0)T. Thus 

c; = S(O)C2S(O)' 

= ( I  cosh r - K sinh t)zzT(I cosh t -K sinh t ) ,  (3.8) 

a result which could have been anticipated by the expression for C ;  in (3.5). It should 
be emphasised that the rearrangement of C1 and C2 to obtain C :  and C ;  has nothing to 
do with the canonical transformation from l? to H. The point is that, for all possible 
choices of the parameters of the transformation, the same set of invariants suffices. 
Hereafter the prime is dropped and C1 and Cz refer to the parameter-free forms given 
by (3.5) and (3.8). 

4. The generators of the five-parameter subgroup 

Corresponding to the two linear and three quadratic invariants there is a five-parameter 
group which is a subgroup of the complete group. Before proceeding to obtain the 
generators of the subgroup, the five invariants are written down in the order and form 
which corresponds to the usage of Lutzky (1978) and Leach (1979). This will facilitate 
comparison. (See also the discussion at the end of § 6.) Thus 

(4 . la )  

(4.lb) 

( 4 . 1 ~ )  

(4.ld) 

(4.le) 

The generator of a one-parameter group is given by 

~ ( q ,  t )  = t ( q ,  t )  a /a t  + 77 (9, t )  a/aq (4.2) 

and the corresponding invariant, in the Lagrangian formulation, is 

4 (494, t )  = (54 - 77 1 - 5L + f(4, t ) .  (4.3) 

In the Hamiltonian formulation, making use of 

p = aL/aq, L = p q  - H, (4.4) 

(4.5) 
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With H as given by (2.2) and in the order corresponding to the listing of the invariants in 
(4.1a-e), 5, 7) and f(ql t )  are given by 

t )  7(4, t )  f(q, t )  

sinh 2t q cosh 2t  q2 sinh 2t 

1 0 0 

0 Cosh t q sinh t 

0 sinh t q cosh t 

cosh 2t q sinh 2t q 2  cosh 2t (4.6) 

and the generators are 

GI = sinh 2t a l a r  + q cosh 2t 8/34 (4,7a) 

Gz = a / a t  (4.7b) 

(4.7c) 

(4.7d) 

(4.7e) 

c3 = cosh t ala4 

G4 = sinh t 8/84 

Gs = cosh 2t a l a r  -+ q sinh 2t 8/34.  

It is noted that for the first, second and fifth, 

with F(y,  t )  being$q2 sinh 2t, aq' andiq'  cosh 2t respectively. For the third and fourth, 

(4.9) 

with F(q,  t )  being q sinh t and q cosh t respectively. 

5. The generators of the three-parameter subgroup 

The maximum number of one-parameter groups for a second-order differential equa- 
tion is eight (Bluman and Cole 1974). Of these, five have been obtained using the 
Hamiltonian formulation and transformation theory. The three remaining are 
obtained using the method of extended Lie groups by applying the second extension of 
the generator to the Newtonian equation of motion. This equation of motion is 

q - q = o .  (5.1) 

The second extension of the operator 

G(q, t )  = ((4, t )  a l a t  + 7 (9, t )  a/aq (5.2) 

is (Prince and Eliezer 1980) 

(5.3) 
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where 

77") dq/dt  - 4 d[/dt 

v ( ~ )  dT(l)/dt  - d[/dt 

d ld t  = a /a t  + 4 a/aq. 

G i s  the generator of a one-parameter group provided 
G'2'(ij - 4 )  =: 0 (5.7) 

whenever equation (5.1) i s  satisfied. This gives rise to the set of partial differential 
equations 

54, = 0 (5.8a) 

(5.8b) 

( 5 . 8 ~ )  

Vri-  77 + q77q -2q51 0. (5.8d) 

The solution of these equations is not particularly difficult in this case. However, for 
some other problems it is not a trivial task. One way to avoid having to solve these 
equations is to compare the known solutions for GI to Gs already obtained with those of 
a similar problem. In this case the attractive oscillator is suitable for comparison. It is 
observed that for G1 to Gs, in the coefficients of the a/at terms, cos goes to cosh and sin 
to sinh while for the 8/34 terms cos goes to cosh and sin to -sinh. For the attractive 
oscillator (cf Lutzky (1978)), 

G~ = 4 8/84 

G7 = q sin t a l a t  + q2 COS s a/aq 

(5.9a) 

(5.9b) 

G~ = q COS t a / a t  -q2sin t alas. (5.9c) 

This suggests that for the repulsive oscillator 

56 = 0, q6=q 

t7 = q sinh t, 777 = q 2  cosh t 

(5.10a) 

(5.10b) 

(5.1 Oc) 

Each of these pairs in turn satisfies the equations (5.Sa-d). Therefore it is proposed that 
for the repulsive oscillator 

G.5 4 8/84 (5.11a) 

G7 = q sinh t a l a t  + q' cosh t 3 / 8 4  (5.1 1 b )  

Gs = q cosh t a l a t  -e q2 sinh t 813s. ( 5 . 1 1 ~ )  

2 
58 = rg cosh t, v8=q sinh t. 

6. The complete symmetry group 

The final test for the generators is whether they have commutation relations appro- 
priate to one of the established groups. One reason for this is to identify the group. 
Another reason is to check the accuracy of the expressions for the generators, especially 
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those of G6, G7 and G8 in view of the method used to obtain them. The commutation 
relations are given in table 1. These are the standard relations, as reported in recent 
literature, for the symmetry group Sl(3, R )  which is therefore the complete symmetry 
group for the repulsive oscillator. 

Table 1. The commutation relations. The (i, j)th entry is the bracket [G,, G,]. 

0 -2G5 
2G5 0 
G3 -G4 

-G4 -G3 
2G2 -2G1 
0 0 

-G7 -Gg 
Gg -G7 

Those who are familiar with the form of the generators for the attractive oscillator 
will have observed that the operators G2 and G5 appear to have been interchanged for 
the repulsive oscillator. This is not the case. The operators G2 and Gs for the repulsive 
oscillator are respectively the counterparts of G2 and G5 for the attractive oscillator. 
This is most easily seen from the corresponding quadratic invariants (see Leach 1978b). 
Under the transformation from attractive to repulsive oscillator, the quadratic invari- 
ants transform as 

(q’-p2)sin2t+2qp cos2t+- (q2+p2)s inh2t+2qp cosh2t 

(q2-p2)cos2t-2qp s in2 t+q2-p2  

( 6 . 1 ~ )  

(6.1 b )  

q 2 + p 2  + ( q 2 + p 2 )  cosh 2t-2qp sinh2t. ( 6 . 1 ~ )  

For the attractive oscillator G5 corresponds to the Hamiltonian, whereas for the 
repulsive oscillator it is G2 which corresponds to the Hamiltonian. The Hamiltonian (in 
a time-independent context) is the generator of time translations and so it is appropriate 
that the generator corresponding to the Hamiltonian in each case is a/at .  In order to 
preserve the pattern of the commutation relations of the generators for Sl(3, R) in the 
form adopted by recent writers, the generator of pure time translations may vary from 
problem to problem. For the attractive oscillator it is G5 and for the repulsive oscillator 
discussed here it is G2. In the case of the alternative form for the Hamiltonian of the 
repulsive oscillator, namely 

H = pq,  (6.2) 

GI becomes slat. 

7. Comment 

The complete symmetry group for the one-dimensional attractive oscillator, the free 
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particle and the repulsive oscillator is Sl(3, R) in each instance. For the one-dimen- 
sional time-dependent attractive oscillator it has been demonstrated by Leach (1979) 
that the complete symmetry group is also Sl(3, R).  This is also the case for the 
one-dimensional time-dependent repulsive oscillator for which the generators are 
given in the Appendix. For an n-dimensional uncoupled time-dependent attractive 
oscillator system, Prince and Eliezer (1980) have shown that the complete symmetry 
group is Sl(n + 2, R ) .  From the results summarised above, it may be inferred that the 
complete symmetry group of an n-dimensional linear system is Sl(n + 2, R )  provided 
that the system is uncoupled, undamped and unforced. 

The question now arises as to whether the complete symmetry group of any 
n-dimensional linear system is also Sl(n + 2, R). It is to be reported elsewhere (Leach 
(1979) The Complete Symmetry Group of a One-dimensional Forced Harmonic Oscil- 
lator (unpublished)) that the result holds if forcing is present. The situation with respect 
to damping is the subject of current investigation. For a coupled system the position is 
as yet obscure, but it is hoped that some indication will be forthcoming in the near 
future. 

Appendix 

The one-dimensional time-dependent repulsive oscillator is described by the 
Newtonian equation of motion 

q - w 2 ( r ) q = o  ('41) 

H = i( p2 - w 2( t )q2) .  

fi = i ( P 2  - Q2) 

and has the Hamiltonian 

(A21 

(-43) 

The Hamiltonian (A2) is related to the corresponding time-dependent Hamiltonian 

by the linear canonical transform 

where p ( t )  is any solution of the 'auxiliary equation' (cf Eliezer and Gray 1976) 

(A5) 3 - w 2 ( t ) p  = l / p  . 
The generators of the complete symmetry group Sl(3, R )  are 

G I  = sinh 2 W a l a  W + ( - p p  sinh 2 W + cosh 2 W)q a/aq 

G~ = a l a  w + p p q  a/aq 

G3 = p cosh w a/aq 

G4 = p sinh W a/aq 

G5 = cosh 2 W a l a  W + (pp cosh 2 W + sinh 2 W)q a / d q  

(A6a)  

(A6b) 

(A6c) 

(-464 

(A6e) 

= 4 aiaq (A6f) 
G7 = p-'q sinh W a l a  W + ( -p  sinh W + p-' cosh W)q2 a/aq (A6g) 
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where 

Gs = p- lq  cosh W a l a  W i- ( p  cosh W +p-' sinh W ) q 2  a/aq ( A 6 h )  

w =  p - 2 d t '  s: 
is the effective time variable. 
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